Gamification for Enhancing Graduate Medical Education
Abstract and Introduction
Abstract
Introduction The last decade has seen many changes in graduate medical education training in the USA, most notably the implementation of duty hour standards for residents by the Accreditation Council of Graduate Medical Education. As educators are left to balance more limited time available between patient care and resident education, new methods to augment traditional graduate medical education are needed.
Objectives To assess acceptance and use of a novel gamification-based medical knowledge software among internal medicine residents and to determine retention of information presented to participants by this medical knowledge software.
Methods We designed and developed software using principles of gamification to deliver a web-based medical knowledge competition among internal medicine residents at the University of Alabama (UA) at Birmingham and UA at Huntsville in 2012–2013. Residents participated individually and in teams. Participants accessed daily questions and tracked their online leaderboard competition scores through any internet-enabled device. We completed focus groups to assess participant acceptance and analysed software use, retention of knowledge and factors associated with loss of participants (attrition).
ResultsAcceptance: In focus groups, residents (n=17) reported leaderboards were the most important motivator of participation. Use: 16 427 questions were completed: 28.8% on Saturdays/Sundays, 53.1% between 17:00 and 08:00. Retention of knowledge: 1046 paired responses (for repeated questions) were collected. Correct responses increased by 11.9% (p<0.0001) on retest. Differences per time since question introduction, trainee level and style of play were observed. Attrition: In ordinal regression analyses, completing more questions (0.80 per 10% increase; 0.70 to 0.93) decreased, while postgraduate year 3 class (4.25; 1.44 to 12.55) and non-daily play (4.51; 1.50 to 13.58) increased odds of attrition.
Conclusions Our software-enabled, gamification-based educational intervention was well accepted among our millennial learners. Coupling software with gamification and analysis of trainee use and engagement data can be used to develop strategies to augment learning in time-constrained educational settings.
Introduction
The last decade has seen many changes in graduate medical education training in the USA. Among the most prominent, the Accreditation Council for Graduate Medical Education (ACGME) issued guidelines in July 2003, and again in July 2011, that placed restrictions on the number of hours worked by medical residents during their training. Another important change is the arrival of millennial students to graduate medical education settings. This generation of learners has had ubiquitous access to information technology throughout their education. Studies of the educational impact of ACGME work hour guidelines have been inconclusive and questions persist among educators on how to best prepare millennial residents in this new work hour-regulated educational environment. As educators are left to balance the more limited time available between patient care and resident education, new methods to augment traditional graduate medical education are needed to best prepare residents within the new ACGME-mandated environment.
Gamification is the use of elements of game design to increase user engagement. Gamification has been successfully incorporated into medical and scientific endeavours in recent years, from health/fitness and patient education applications, to genome comparisons (Phylo), protein structure prediction (Foldit) and malaria parasite quantification. Due to its proven ability to improve motivation, participation and time investment across multiple settings, we incorporated elements of gamification into the design of software that allowed our residents to participate in a medical knowledge competition with their peers in order to encourage extracurricular learning. We used the conceptual frameworks of user-centred design and situational relevance to achieve meaningful gamification, including connecting with users in multiple ways and aligning our 'game' with our residents' backgrounds and interests in furthering their education. The purpose of this study was to assess acceptance and use of a novel gamification-based medical knowledge software designed to supplement traditional graduate medical education among internal medicine (IM) residents and to determine retention of information on subsequent retest.